0%

水下机器人视觉_6_张量

Feedforward

前向传播

神经网络的数据表示–张量

标量Scalars(0D tensors)

矢量Vectors(1D tensors)

矩阵Matrices(2D tensors)

3D tensors

张量的关键属性

Shape:

  • a matrix has shape (3, 5)
  • a 3D tensor has shape (3, 3, 5)
  • a vector has a shape (5, )
  • a scalar has an empty shape ()

数据类型(在python库中叫做dtype):

  • 一个张量的数据类型可以是float32, uint8, float64, ..
  • 在少数场合下, 可以看到char类型的张量
  • string类型的张量在Numpy中不存在(或其他大多数的库中)

现实世界中的数据张量

vector data – 2D tensors of shape (samples, features)
attribute information:

  • gender
  • length
  • diameter
  • height
  • whole weight
  • shucked weight
  • viscera weight
  • shell weight
  • rings

timeseries data – 3D tensors of shape (samples, timesteps, features)
every minute, the current highest/lowest/average price of the stock
400 minutes in a trading day
250 samples (or 250 days)
a 3D tensor of shape (250, 400, 3)

image data
three dimensions: height, width, and color depth
a batch of 128 color images could be stored in a 4D tensor of shape (128, 256, 256, 3)

video data
a 4D tensor (frames, height, width, color_depth)
a batch of different videos can be stored in a 5D tensor of shape (samples, frames, height, width, color_depth)

Thank you for your reward !